Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
Artificial Intelligence in Marketing
 “Nearly half of S&P 500 companies have talked about...
Predictive AI Streamlines Operations In This Surprisingly Simple Way
 Originally published in Built In, May 22, 2024. Your...
Why You Must Twist Your Data Scientist’s Arm To Estimate AI’s Value
 Originally published in Forbes, June 11, 2024. If you’ve...
3 Ways Predictive AI Delivers More Value Than Generative AI
 Originally published in Forbes, March 4, 2024. Which kind...

Industry News

Perfect Information Doesn’t Equal Perfect Predictions

 Many organizations attempt to achieve “data nirvana” by having 100% complete information for any given business decision. In the customer analytics space, this is sometimes referred to as a “360 degree view of the customer.” However, we really never know everything about our customers. What we call a 360 degree view is really just the

Why not now? The barriers to adopting true predictive analytics.

 While reading Jared Diamond’s excellent book on the rise and subsequent global dominance of Eurasian societies Guns, Germs and Steel, I was stopped in my tracks by his chapter on the evolution of technology entitled Necessity’s Mother. Diamond...

2014 Big Data Predictions from IDC and IIA

 Both IDC and The International Institute of Analytics (IIA) discussed their big data and analytics predictions for 2014 in separate webcasts last week. Here is my summary of their predictions plus a few nuggets from other sources. IDC predicts...

Hiring 1 Data Science unicorn is hard enough, a team is impossible. To scale means to specialise.

 The Data Scientists need a large set of skills, including business know-how, modelling and mathematics, plus programming. They are as hard to find as unicorns, or superheroes. I know this talent shortage first hand. Is the solution...

Python Displacing R As The Programming Language For Data Science

  R remains popular with the PhDs of data science, but as data moves mainstream, Python is taking over. While R has traditionally been the programming language of choice for data scientists, it is quickly ceding ground...

Understanding Your Business With Descriptive, Predictive And Prescriptive Analytics

 Companies have long been involved in the analysis of how a company performed over time. As the history of big data shows, already for many years we try to understand how the organisations or the world around...

“The hungry statistician” – or why we never can get enough data

 As the “Year of Statistics” comes to a close, I write this blog in support of the many statisticians who carefully fulfil their analysis tasks day by day, and to defend what may appear to be demanding behavior when...

Analytics 3.0 — the old guard masters how to build data products

 Asked to name a big data company, many of us would say Google or Facebook or eBay. But for old-school giants such as General Electric Co. and Macy’s Inc., big data is fast becoming as central to...

Data Science Wars: Python vs. R

 As I frequently travel in data science circles, I’m hearing more and more about a new kind of tech war: Python vs. R. I’ve lived through many tech wars in the past, e.g. Windows vs. Linux, iPhone...

Rexer Analytics 2013 Data Miner Survey Highlights

 Top 5 most used tools were R (used by 70% of data miners), IBM SPSS Statistics, Rapid Miner, SAS, and Weka, while STATISTICA, KNIME, SAS JMP, IBM SPSS Modeler, and RapidMiner had the the highest satisfaction. Big...

Page 72 of 82 1 67 68 69 70 71 72 73 74 75 76 77 82