Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
How Machine Learning Works for Social Good
  Originally published in KDnuggets, Nov 2020. This article...
Diversity and Collaborative Problem Solving to Address Wicked Data Ethics Problems
 The complexity of the ethical issues facing professionals who...
Climate Tech Needs Machine Learning, Says PAW Climate Conference Chair
  Straight from the horse’s mouth – the founding...
Predictive Policing: Six Ethical Predicaments
  Originally published in KDNuggets. This article is based...
SHARE THIS:

5 years ago
Wise Practitioner – Text Analytics Interview Series: John Herzer and Pengchu Zhang at Sandia National Laboratories

 In anticipation of their upcoming conference co-presentation, Enhancing search results relevance using Word2Vec Language Models at Text Analytics World Chicago, June 21-22, 2016, we asked Pengchu Zhang, Computer Scientist at Sandia National Laboratories, and John Herzer, Enterprise Search Project Lead at Sandia National Laboratories, a few questions about their work in text analytics. Q: In your work with text analytics, what behavior or outcome do your models predict? A: We use the Word2Vec Neural Network model in our search application to predict word usage in our corpus for a particular context.  Word2Vec consists of two models, the Continuous Bag of

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.