Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
AI Success Depends On How You Choose This One Number
 Originally published in Forbes, March 25, 2024. To do...
Elon Musk Predicts Artificial General Intelligence In 2 Years. Here’s Why That’s Hype
 Originally published in Forbes, April 10, 2024 When OpenAI’s...
Survey: Machine Learning Projects Still Routinely Fail to Deploy
 Originally published in KDnuggets. Eric Siegel highlights the chronic...
Three Best Practices for Unilever’s Global Analytics Initiatives
    This article from Morgan Vawter, Global Vice...
SHARE THIS:

2 years ago
Sharing Learnings From the First Algorithmic Bias Bounty Challenge

 
Originally posted on Twitter Engineering, Sept 21, 2021.

In October 2020, people on Twitter raised concerns that the saliency model we used to crop images didn’t serve all people equitably. Shortly thereafter, we published our algorithmic bias assessment which confirmed the model was not treating all people fairly. We committed to decrease our reliance on ML-based image cropping since the decision to crop an image is best made by people. In May 2021 we began rolling out changes to how images appear on Twitter. Now, standard aspect ratio photos appear uncropped on the Home Timeline on mobile, and we are working on further improvements that build on this initial effort.

But our work didn’t stop there. In August 2021, we held the first algorithmic bias bounty challenge and invited the ethical AI hacker community to take apart our algorithm to identify additional bias and other potential harms within it. The results of their findings confirmed our hypothesis: we can’t solve these challenges alone, and our understanding of bias in AI can be improved when diverse voices are able to contribute to the conversation.

In this post, we’ll share what we learned through creating and hosting this challenge, what the submissions taught us, and what’s next. We believe it’s critical we start a dialogue and encourage community-led, proactive surfacing and mitigation of algorithmic harms before they reach the public. We are hopeful that bias bounties can be an important tool going forward for companies to solicit feedback and understand potential problems.

To continue reading this article, click here.

One thought on “Sharing Learnings From the First Algorithmic Bias Bounty Challenge

  1. يمكن التخلص من النمل من خلال استخدام المبيدات الحشرية، أو الطرق الطبيعية، حيث يتمّ رشّ حمض البوريك، أو مسحوق البوراكس حول المداخل، وعلى طول أيّ مسارات مرئية، ويجب الحرص على إبعاد الأطفال والحيوانات عن المناطق التي يتمّ وضع المبيد عليها، كما يمكن وضع حمض البوريك على كميةٍ من دقيق الذرة أو السكر؛ وبالتالي فإنّ النمل يحمل هذه الحبوب المسممة ويموت. كما يمكن صنع علاجات منزلية للتخلص من النمل، ومن الأمثلة على المكوّنات المنزلية التي تقضي على النمل ما يأتي: الطباشير، ونشا الذرة، والفازلين، والنعناع، والتوابل؛ فمثلاً يمكن استخدام الفازلين وخلطه مع خلاصة النعناع جيداً، ثمّ وضع هذا الخليط على النوافذ والأبواب، حيث يُعتبر النعناع والفازلين من المواد التي يكرهها النمل.
    شركة مكافحة حشرات بجازان

     

Leave a Reply