Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
ML in the Spotlight: Trailblazers with Walter Isaacson Covers Predictive Analytics
 Predictive analytics got another public spotlight and Machine Learning Times Executive...
ChapGPT Doesn’t “Know” But It Can Tell
  Polanyi’s paradox, named in honor of the philosopher...
Take the 2023 Rexer Analytics Data Science Survey Now
  Rexer Analytics and Machine Learning Week launch 2023...
Three Ethical Issues Related to Credit Scores
 A reasonable credit score and its accompanying benefits provide...
SHARE THIS:

3 years ago
Re-examining Model Evaluation: The CRISP Approach

 The performance of prediction models can be judged using a variety of methods and metrics. Some years ago, I was challenged to arrive at a set of rules that would provide both the analyst and marketer guidance as to how to evaluate results of a predictive modeling exercise. “What?” you ask.  “Just look into a standard textbook, and a whole host of criteria is readily available.”  These provide value to a more quantitative oriented manager, but to the novice marketer, these evaluation tools can be intimidating. After all, a ROC curve, a  Kolmogorov Smirnov test, or a  Root

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.