Machine Learning Times
Machine Learning Times
AI Success Depends On How You Choose This One Number
 Originally published in Forbes, March 25, 2024. To do...
Elon Musk Predicts Artificial General Intelligence In 2 Years. Here’s Why That’s Hype
 Originally published in Forbes, April 10, 2024 When OpenAI’s...
Survey: Machine Learning Projects Still Routinely Fail to Deploy
 Originally published in KDnuggets. Eric Siegel highlights the chronic...
Three Best Practices for Unilever’s Global Analytics Initiatives
    This article from Morgan Vawter, Global Vice...

2 weeks ago
The Danger Zone in Data Science: Why mediocre ML is so dangerous to the business


Originally published in Delphina, May 29, 2024.

When I (Duncan) was on Uber’s Marketplace team, we would (semi) joke that we were lurching from crisis to crisis.

Our dozens of core machine learning products directly controlled billions of company dollars — targeted promotions, surge pricing, driver incentives, ETAs, pool matching, upfront rider fares, subscription upsells, the list goes on. We lived in paranoia that these were fundamentally broken in a way that would sink the business.

Every week brought a new potential Data Science Disaster. The turmoil would always start the same way: someone would find something suspicious in the data. It might have been a spike in our internal metrics like “zeros”, which measured riders who opened the app and didn’t see any cars available. Were we under-surging and losing riders because of poor reliability? Had we deployed too many rider promos? The wrong driver incentives?

Or it could have been a tweet — perhaps a celebrity saw a fare that seemed high, and then they walked 20 feet and the price changed materially — and of course screenshots went viral and started spiraling.

To continue reading this article, click here.

Comments are closed.