Machine Learning Times
Machine Learning Times
Why You Must Twist Your Data Scientist’s Arm To Estimate AI’s Value
 Originally published in Forbes, June 11, 2024. If you’ve...
3 Ways Predictive AI Delivers More Value Than Generative AI
 Originally published in Forbes, March 4, 2024. Which kind...
AI Success Depends On How You Choose This One Number
 Originally published in Forbes, March 25, 2024. To do...
Elon Musk Predicts Artificial General Intelligence In 2 Years. Here’s Why That’s Hype
 Originally published in Forbes, April 10, 2024 When OpenAI’s...

8 years ago
How Hillary for America Is (Almost Certainly) Using Uplift Modeling


Analytics Image

In this article, I provide evidence that Hillary for America is employing uplift modeling for per-voter persuasion—which Trump’s campaign may not be taking advantage of—and I pose questions about the 2016 presidential race to a leading practitioner whose hands-on efforts won Obama votes in 2012: Daniel Porter, former director of statistical modeling of Obama for America and co-founder of BlueLabs. For more, also see Porter’s keynote at Predictive Analytics World (October 23-27 in New York): “Persuasion Modeling in Presidential Campaigns and How It Applies to Business.”

Analytics will win votes this year. Science, as it did in 2012, is playing an important role for mass voter persuasion in the U.S. presidential race. It’s a numbers game: Predictive analytics targets campaign activities, strengthening a campaign’s army of volunteers by driving its activities more optimally.

Of which presidential candidate do I speak? We have every reason to believe that Hillary Clinton’s campaign is leveraging predictive analytics—as Obama’s did in 2012. Donald Trump’s campaign appears to lag in such efforts.

Hillary for America is leveraging data science in a very particular way. The undertaking predicts each individual voter’s response to campaign contact in order to drive millions of decisions as to which voter receives a knock on the door or a phone call. It’s an innovative, data-driven process that has changed the game for political campaigns.

Nate Silver Forecasts the Future—but Doesn’t Change It

A campaign’s numbercrunching is an undercover enterprise—but another form of quantitative prognostication is right out in the open: campaign forecasting via poll aggregation. Here, the heavyweight champion is Nate Silver, the most celebrated statistician in the US, who correctly forecasted the election outcome for each and every state in 2012. See his current 2016 forecasts here.

But an election poll does not constitute prognostic technology—it does not endeavor to calculate insights that foresee human behavior. Rather, a poll is plainly the act of voters explicitly telling you what they’re going to do. It’s a mini-election dry run. There’s a craft to aggregating polls, as Silver has mastered so adeptly, but even he admits it’s no miracle of clairvoyance. “It’s not really that complicated,” he told late night talk show host Stephen Colbert the day before the 2012 election. “There are many things that are much more complicated than looking at the polls and taking an average… right?”

Instead, true power comes in influencing the future rather than only speculating on it. Nate Silver publicly competes to win election forecasting, while Obama’s analytics team discreetly competed by way of predictive analytics to win the election itself–as Hillary for America is now doing. This is a form of quantitative prediction that transcends forecasting the outcome to actually exert an effect on it.

The value proven in 2012 is too good to pass up for 2016. Obama for America showed that their analytics convinced more voters than traditional campaign targeting. The method also improved the campaign’s TV ad buying, making the TV ad buy 18% more effective—they could persuade 18 percent more voters with the same level of investment, which is a meaningful effect given their TV budget of $400 million.

The Evidence: Hillary for America is Using Analytics for Voter Persuasion

 The specifics are well-guarded secrets, but the evidence clearly indicates that Hillary for America is deploying predictive analytics—more specifically, an advanced flavor thereof called persuasion modeling (aka uplift modeling)—as Obama for America did. Here’s the data that supports this presumption:

1) TRACTION. Daniel Porter, one of three hands-on practitioners who executed the persuasion modeling for Obama for America, and who has since co-founded the analytics firm BlueLabs (see the Q-and-A below), stands by this technical approach. “It remains clear that persuasion modeling is extraordinarily valuable for political campaigns. In fact, after the experience accrued last time around, it’s sure to be done by 2016 campaigns even more effectively than in 2012,” he told me. He says there’s also going to be better data for this work, at least on the Democratic side. “The DNC is building out further its data infrastructure about voters in battleground states.”

2) HIRES. As early as July 2015, the Hillary for America campaign posted that their “analytics team is looking for data nerds.” Shown as one of 11 campaign job categories on the campaign’s website, analytics included five types of open roles. More specifically, analytics job postings enlisted staff for persuasion modeling: “helping the campaign determine which voters to target for persuasion.” The campaign’s analytics director is Elan Kriegel, another co-founder of BlueLabs, who grew the campaign’s data team by pulling people from BlueLabs.

3) CONTRACTS. Hillary for America has engaged BlueLabs for analytics servicesat least $50,000 worth. And Civis Analytics, another analytics company, which employs at least 27 “data whiz kids” from Obama’s 2012 campaign (Eric Schmidt is the sole investor) has received more than $3.5 million in payments from Democratic campaigns in the last two cycles.

 A Q-and-A with Dan Porter

Dan PorterIn anticipation of his keynote presentation at Predictive Analytics World (October 23-27 in New York), “Persuasion Modeling in Presidential Campaigns and How It Applies to Business,” I had the opportunity to ask Dan Porter a few questions about his work for Obama and what may currently be in play for the 2016 election.

To access the complete article, including Porter’s responses to the following questions, see its full publication in Scientific American (or Salon).

Q1: What was the most surprising discovery or insight you unearthed when applying uplift modeling for Obama for America 2012?

Q2: What are the biggest differences between applying uplift modeling for a commercial marketing campaign versus for a political campaign?

Q3: What public evidence is there that Trump’s campaign is or is not using predictive analytics or even uplift modeling in particular?

Further readingthree previous articles by Eric Siegel that explain analytical persuasion:

The Real Story Behind Obama’s Election Victory

Team Obama Mastered the Science of Mass Persuasion — And Won

Personalization Is Back: How to Drive Influence by Crunching Numbers

Eric Siegel, Ph.D., is the author of Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, Revised and Updated Edition (Wiley, January 2016), the founder of the Predictive Analytics World conference series which includes events for business, government, healthcare, workforce, manufacturing, and financial services —executive editor of The Predictive Analytics Times, and a former computer science professor at Columbia University.

Leave a Reply