Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
Video – Alexa On The Edge – A Case Study in Customer-Obsessed Research from Susanj of Amazon
 Event: Machine Learning Week 2021 Keynote: Alexa On The Edge...
Why AI Isn’t Going to Replace Data Scientists Any Time Soon
 Should data scientists consider AI a threat to their...
“Doing AI” Is a Mistake that Detracts from Real Problem-Solving
  A note from Executive Editor Eric Siegel: Richard...
Getting the Green Light for a Machine Learning Project
  This article is based on the transcript of...
SHARE THIS:

4 months ago
Remote-Control Robots and the Limits of AI

 
Originally published in Wired.com, April 7, 2021.

A growing number of robots are operated remotely, often by workers thousands of miles away. Could it be a job of the future?

David Tejeda helps deliver food and drinks to tables at a small restaurant in Dallas. And another in Sonoma County, California. Sometimes he lends a hand at a restaurant in Los Angeles too.

Tejeda does all this from his home in Belmont, California, by tracking the movements and vital signs of robots that roam around each establishment, bringing dishes from kitchen to table, and carrying back dirty dishes.

Sometimes he needs to help a lost robot reorient itself. “Sometimes it’s human error, someone moving the robot or something,” Tejeda says. “If I look through the camera and I say, ‘Oh, I see a wall that has a painting or certain landmarks,’ then I can localize it to face that landmark.”

Tejeda is part of a small but growing shadow workforce. Robots are taking on more kinds of blue-collar work, from driving forklifts and carrying freshly picked grapes to stocking shelves and waiting tables. Behind many of these robot systems are humans who help the machines perform difficult tasks or take over when they get confused. These people work from bedrooms, couches, and kitchen tables, a remote labor force that reaches into the physical world.

The need for humans to help the robots highlights the limits of artificial intelligence, and it suggests that people may still serve as a crucial cog in future automation.  “The more automation you inject into a scenario, the more, at least for now, you need those humans there to handle all the exceptions and just watch and supervise,” says Matt Beane, an assistant professor at the University of California, Santa Barbara, who studies robotic automation of manual work.

 

To continue reading this article, click here.

Leave a Reply