Machine Learning Times
EXCLUSIVE HIGHLIGHTS
2 More Ways To Hybridize Predictive AI And Generative AI
  Originally published in Forbes Predictive AI and generative AI...
How To Overcome Predictive AI’s Everyday Failure
  Originally published in Forbes Executives know the importance of predictive...
Our Last Hope Before The AI Bubble Detonates: Taming LLMs
  Originally published in Forbes To know that we’re in...
The Agentic AI Hype Cycle Is Out Of Control — Yet Widely Normalized
  Originally published in Forbes I recently wrote about how...
SHARE THIS:

6 years ago
Re-examining Model Evaluation: The CRISP Approach

 The performance of prediction models can be judged using a variety of methods and metrics. Some years ago, I was challenged to arrive at a set of rules that would provide both the analyst and marketer guidance as to how to evaluate results of a predictive modeling exercise. “What?” you ask.  “Just look into a standard textbook, and a whole host of criteria is readily available.”  These provide value to a more quantitative oriented manager, but to the novice marketer, these evaluation tools can be intimidating. After all, a ROC curve, a  Kolmogorov Smirnov test, or a  Root

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.