Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
AI and ML in Health Care: A Brief Review
 Of the many disciplines that are active users of...
Visualizing Decision Trees with Pybaobabdt
 Originally published in Towards Data Science, Dec 14, 2021....
Correspondence Analysis: From Raw Data to Visualizing Relationships
 Isn’t it satisfying to find a tool that makes...
Podcast: Four Things the Machine Learning Industry Must Learn from Self-Driving Cars
    Welcome to the next episode of The Machine...
SHARE THIS:

5 days ago
OpenAI’s Attempts to Watermark AI Text Hit Limits

 
Originally published in TechCrunch, Dec 22, 2022.

It’s proving tough to rein in systems like ChatGPT.

Did a human write that, or ChatGPT? It can be hard to tell — perhaps too hard, its creator OpenAI thinks, which is why it is working on a way to “watermark” AI-generated content.

In a lecture at the University of Texas at Austin, computer science professor Scott Aaronson, currently a guest researcher at OpenAI, revealed that OpenAI is developing a tool for “statistically watermarking the outputs of a text [AI system].” Whenever a system — say, ChatGPT — generates text, the tool would embed an “unnoticeable secret signal” indicating where the text came from.

OpenAI engineer Hendrik Kirchner built a working prototype, Aaronson says, and the hope is to build it into future OpenAI-developed systems.

“We want it to be much harder to take [an AI system’s] output and pass it off as if it came from a human,” Aaronson said in his remarks. “This could be helpful for preventing academic plagiarism, obviously, but also, for example, mass generation of propaganda — you know, spamming every blog with seemingly on-topic comments supporting Russia’s invasion of Ukraine without even a building full of trolls in Moscow. Or impersonating someone’s writing style in order to incriminate them.”

To continue reading this article, click here.

One thought on “OpenAI’s Attempts to Watermark AI Text Hit Limits

Leave a Reply