Machine Learning Times
EXCLUSIVE HIGHLIGHTS
Our Last Hope Before The AI Bubble Detonates: Taming LLMs
  Originally published in Forbes To know that we’re in...
The Agentic AI Hype Cycle Is Out Of Control — Yet Widely Normalized
  Originally published in Forbes I recently wrote about how...
Predictive AI Must Be Valuated – But Rarely Is. Here’s How To Do It
  Originally published in Forbes To be a business is...
Agentic AI Is The New Vaporware
  Originally published in Forbes The hype term “agentic AI”...
SHARE THIS:

8 years ago
Feature Engineering vs. Machine Learning in Optimizing Customer Behavior

 The debate on this topic is not a new one. What is the secret sauce in yielding improved modelling performance?  Is it the inputs, features or variables of a given predictive model or is it the specific mathematics that is used alongside these inputs or features? Historically, practitioners including myself, have tended to argue that it is the inputs or the feature engineering component which yield the most value when building models. In fact, I wrote a paper several years ago which was published in the “Journal of Marketing Analytics” –May, 2013 entitled “Is predictive analytics for marketers

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.