Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
Video – How to Use AI Ethically from Natalia Modjeska of Omdia
 Event: Machine Learning Week 2021 Keynote: How to Use AI...
Video – Alexa On The Edge – A Case Study in Customer-Obsessed Research from Susanj of Amazon
 Event: Machine Learning Week 2021 Keynote: Alexa On The Edge...
Why AI Isn’t Going to Replace Data Scientists Any Time Soon
 Should data scientists consider AI a threat to their...
“Doing AI” Is a Mistake that Detracts from Real Problem-Solving
  A note from Executive Editor Eric Siegel: Richard...
SHARE THIS:

2 weeks ago
Deep Learning’s Diminishing Returns

 
Originally published in IEEE Spectrum, Sept 24, 2021.

Deep Learning is now being used to translate between languages, predict how proteins fold, analyze medical scans, and play games as complex as Go, to name just a few applications of a technique that is now becoming pervasive. Success in those and other realms has brought this machine-learning technique from obscurity in the early 2000s to dominance today.

Although deep learning’s rise to fame is relatively recent, its origins are not. In 1958, back when mainframe computers filled rooms and ran on vacuum tubes, knowledge of the interconnections between neurons in the brain inspired Frank Rosenblatt at Cornell to design the first artificial neural network, which he presciently described as a “pattern-recognizing device.” But Rosenblatt’s ambitions outpaced the capabilities of his era—and he knew it. Even his inaugural paper was forced to acknowledge the voracious appetite of neural networks for computational power, bemoaning that “as the number of connections in the network increases…the burden on a conventional digital computer soon becomes excessive.”

Fortunately for such artificial neural networks—later rechristened “deep learning” when they included extra layers of neurons—decades of Moore’s Law and other improvements in computer hardware yielded a roughly 10-million-fold increase in the number of computations that a computer could do in a second. So when researchers returned to deep learning in the late 2000s, they wielded tools equal to the challenge.

To continue reading this article, click here.

Leave a Reply