Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
Why Alphabet’s Clean Energy Moonshot Depends On AI
 Originally published in Forbes Note: Ravi Jain, Chief Technology Officer...
Predictive AI Only Works If Stakeholders Tune This Dial
 Originally published in Forbes I’ll break it to you gently:...
The Rise Of Large Database Models
 Originally published in Forbes Even as large language models have...
3 Predictions For Predictive AI In 2025
 Originally published in Forbes GenAI’s complementary sibling, predictive AI, makes...
SHARE THIS:

9 years ago
Three Critical Definitions You Need Before Building Your First Predictive Model

 

Portions excerpted from Chapter 2 of his book Applied Predictive Analytics (Wiley 2014, http://amzn.com/1118727967)

Successful predictive modeling is more than identifying the right algorithms. And, even though 60-90% of our time is spend on data preparation before deploying the first predictive model built from a new data set, successful predictive modeling goes well beyond effective data cleaning and feature creation. I argue there, that most failed predictive modeling projects are on the path to failure before the first data set is even loaded because of these three steps that are frequently overlooked.

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.