Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
The Great AI Myth: These 3 Misconceptions Fuel It
 Originally published in Forbes, July 29, 2024. The hottest thing...
How to Sell a Machine Learning Project
 Originally published in Built In, February 6, 2024. Never...
The 3 Things You Need To Know About Predictive AI
 Originally published in Forbes, June 29, 2024. Some problems are...
Alphabet Uses AI To Rush First Responders To Disasters—Takeaways For Businesses
 Originally published in Forbes, July 7, 2024. The National Guard...
SHARE THIS:

10 years ago
Recognizing and Avoiding Overfitting, Part 1

 In my last two posts I described why overfitting predictive models is dangerous beyond the most obvious problem, namely that accuracy on new data is lower than expected. In the next few posts, I’ll describe how to recognized that overfitting may be occurring, and some common approaches to remove or mitigate the effects of overfitting.  OVERVIEW Overfitting is perhaps the most common and destructive problem in predictive modeling. It is common because predictive modeling is often an inductive, data-driven exercise where the data is king, as opposed to threads of statistical modeling where the model is king (terms

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.