Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
The Rise Of Large Database Models
 Originally published in Forbes Even as large language models have...
3 Predictions For Predictive AI In 2025
 Originally published in Forbes GenAI’s complementary sibling, predictive AI, makes...
The Quant’s Dilemma: Subjectivity In Predictive AI’s Value
 Originally published in Forbes This is the third of a...
To Deploy Predictive AI, You Must Navigate These Tradeoffs
 Originally published in Forbes This is the second of a...
SHARE THIS:

10 years ago
It is a Mistake to…. Answer Every Inquiry

 (Part 9 (of 11) of the Top 10 Data Mining Mistakes, drawn from the Handbook of Statistical Analysis and Data Mining Applications) I’m tempted to start with a kind of query that experience teaches some of us not to answer, like “Does this data make me look fat?” But that actually misleads about the point I’m trying to make. Data Scientists (and their models) should answer all queries as truthfully as the evidence allows, regardless of how happy or unhappy that makes the questioner. What I am arguing here is we shouldn’t answer when our opinion is unqualified;

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.