Machine Learning Times
EXCLUSIVE HIGHLIGHTS
For Managing Business Uncertainty, Predictive AI Eclipses GenAI
  Originally published in Forbes The future is the ultimate...
AI Business Value Is Not an Oxymoron: How Predictive AI Delivers Real ROI for Enterprises
  Originally published in AI Realized Now “Shouldn’t a great...
How To Un-Botch Predictive AI: Business Metrics
  Originally published in Forbes Predictive AI offers tremendous potential...
2 More Ways To Hybridize Predictive AI And Generative AI
  Originally published in Forbes Predictive AI and generative AI...
SHARE THIS:

3 years ago
Leveraging Transformers to Improve Product Retrieval Results

 
Originally published in Amazon Science, Aug 3, 2023.

Assessing the absolute utility of query results, rather than just their relative utility, improves learning-to-rank models.

When a customer clicks on an item in a list of product-search results, it implies that that item is better than those not clicked. “Learning to rank” models leverage such implicit feedback to improve search results, comparing clicked and unclicked results in either “pairwise” (comparing pairs of results) or listwise (judging a results position within the list) fashion.

A problem with this approach is the lack of absolute feedback. For instance, if no items in the selection are clicked, it’s a signal that none of the results was useful. But without clicked items for comparison, learning-to-rank models can do nothing with that information. Similarly, if a customer clicks on all the items in a list, it could indicate that all the results were useful — but it could also indicate a fruitless search to find even one useful result. Again, learning-to-rank models can’t tell the difference.

In a paper we’re presenting at this year’s International Conference on Knowledge Discovery and Data Mining (KDD), we describe a new approach to learning to rank that factors in absolute feedback. It also uses the type of transformer models so popular in natural-language processing to attend to differences among items in the same list to predict their relative likelihood of being clicked.

To continue reading this article, click here.

6 thoughts on “Leveraging Transformers to Improve Product Retrieval Results

  1. In the bitlife Life Simulator, you will play a simulation game where you must make life-changing choices. For instance, you could wed the love of your life, start a family, and further your education. You can also choose things that, to be honest, will frighten your parents, but hey, maybe they’ll be entertaining.

     
  2. Have you played Stickman Boost? overcoming thousands of obstacles to get the present like the way we live everyday. Come to visit and play to have funny time and get superb adventures.

     
  3. Hello! The article turned out to be very useful and informative. If you’re looking for a way to relax and add a little excitement to your life, I recommend trying out online casinos. It’s a fun pastime with the chance to win prizes. Join and start playing here Aussie bt Casino https://aussiebt-casino.com/ .Good luck!