An Agile Approach to Data Science Product Development - Machine Learning Times - machine learning & data science news
Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
SHARE THIS:

2 months ago
An Agile Approach to Data Science Product Development

 Introduction With the huge growth in machine learning over the past few years, there is a lot of discussion, but few frameworks, on effective AI Project Management. Industry-standard frameworks for data analysis projects, like CRISP-DM, exist but none are effective for managing the development of AI products from deployment to production. The result is that many data science teams are focused on outputting one-off analytical projects, rather than building long-term, maintainable products that directly drive business processes and goals. Luckily, the software engineering world has spent decades grappling with the challenges of building products at scale, and the machine learning

To view this content
Login OR subscribe for free

Already receive the Machine Learning Times emails?
The Machine Learning Times now requires legacy email subscribers to upgrade their subscription - one time only - in order to attain a password-protected login and gain complete access.

Click here to complete this one-time subscription upgrade

Existing Users Log In
   
New User Registration
*Required field

Comments are closed.

Pin It on Pinterest

Share This