Machine Learning Times
EXCLUSIVE HIGHLIGHTS
2 More Ways To Hybridize Predictive AI And Generative AI
  Originally published in Forbes Predictive AI and generative AI...
How To Overcome Predictive AI’s Everyday Failure
  Originally published in Forbes Executives know the importance of predictive...
Our Last Hope Before The AI Bubble Detonates: Taming LLMs
  Originally published in Forbes To know that we’re in...
The Agentic AI Hype Cycle Is Out Of Control — Yet Widely Normalized
  Originally published in Forbes I recently wrote about how...
SHARE THIS:

8 months ago
Companies Are Struggling to Drive a Return on AI. It Doesn’t Have to Be That Way.

 

Originally published on The Wall Street Journal, April 26, 2025.

Successful AI adoption begins with a targeted approach, and proceeds with careful orchestration and scaling across the organization

AI adoption among companies is stunningly high, but most of them are struggling to put it to good use. They intuit that AI is essential to their future. Yet intuition alone won’t unlock the promise of AI, and it isn’t clear to them which key will do the trick.

As of last year, 78% of companies said they used artificial intelligence in at least one function, up from 55% in 2023, according to global management consulting firm McKinsey’s State of AI survey, released in March. From these efforts, companies claimed to typically find cost savings of less than 10% and revenue increases of less than 5%.

While the measurable financial return is limited, business is nonetheless all-in on AI, according to the 2025 AI Index report released in April by the Stanford Institute for Human-Centered Artificial Intelligence. Last year, private generative AI investment alone hit $33.9 billion globally, up 18.7% from 2023.

The numbers reflect a “productivity paradox,” in which massive improvements in AI capabilities haven’t led to a corresponding surge in national-level productivity, according to Stanford University economist and professor Erik Brynjolfsson, who worked on the AI Index. While some specific projects have been enormously productive, “many companies are disappointed with their AI projects.”

To continue reading this article, click here.

Comments are closed.