Machine Learning Times
EXCLUSIVE HIGHLIGHTS
2 More Ways To Hybridize Predictive AI And Generative AI
  Originally published in Forbes Predictive AI and generative AI...
How To Overcome Predictive AI’s Everyday Failure
  Originally published in Forbes Executives know the importance of predictive...
Our Last Hope Before The AI Bubble Detonates: Taming LLMs
  Originally published in Forbes To know that we’re in...
The Agentic AI Hype Cycle Is Out Of Control — Yet Widely Normalized
  Originally published in Forbes I recently wrote about how...
SHARE THIS:

7 years ago
The Loss of Inference

    For more from this writer, Stephen Chen, see his session, “The Perils of Prediction” at PAW Business, June 19, 2019, in Las Vegas, part of Mega-PAW. The burgeoning field of Data Science / Machine Learning borrows heavily from Statistics but bastardizes it. For example, “dummy variable” becomes “one-hot encoding”, “independent variables” become “features”. This shift in nomenclature results in a loss of methodological meaning that was inherent in the original names; for instance, a casual Google search on the “auto-mpg” dataset will throw out many how-to pages, almost all of which treat the variables as “features”

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.