Machine Learning Times
EXCLUSIVE HIGHLIGHTS
Hybrid AI: Industry Event Signals Emerging Hot Trend
 Originally published in Forbes After decades chairing and keynoting myriad...
Predictive AI Thrives, Despite GenAI Stealing The Spotlight
 Originally published in Forbes Generative AI and predictive AI ought...
For Managing Business Uncertainty, Predictive AI Eclipses GenAI
  Originally published in Forbes The future is the ultimate...
AI Business Value Is Not an Oxymoron: How Predictive AI Delivers Real ROI for Enterprises
  Originally published in AI Realized Now “Shouldn’t a great...
SHARE THIS:

11 years ago
Defining Measures of Success for Predictive Models

 Excerpted from Chapter 2 of Mr. Abbott’s book Applied Predictive Analytics, Wiley 2014 The determination of what is considered a good model depends on the particular interests of the organization and is specified as the business success criterion. The business success criterion needs to be converted to a predictive modeling criterion so the modeler can use it for selecting models. If the purpose of the model is to provide highly accurate predictions or decisions to be used by the business, measures of accuracy will be used. If interpretation of the business is what is of most interest, accuracy

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.