

Insurance Pricing Models Using Predictive Analytics

March 5th, 2012

Agenda

- Background/Information
- Why Predictive Analytics is Required
- Case Study-AMA
- An Effective Decision Tool for front-line Underwriting and Brokers
- Conclusion

Background/Information

• The standard 4 step analytical process is required for solutions to be successful in any predictive analytics exercise within any business:

- What does the 4 step approach mean within the context of building insurance pricing solutions?
- 1st Step
 - What is the real problem here?
- Insurance companies have always been able to provide pricing solutions using data
 - The actuarial discipline is comprised of individuals with strong quantitative and mathematical skills
 - This discipline is not new and is considered the analytical engine of most insurance companies
- So why do they need data miners/predictive analytics practitioners?

- Historically, the use of analytics by actuaries has been about comparing groups
 - Differentials are then used to create a price or premium for policy holder
 - Example: What premium should a male driver pay for automobile insurance? What about a female?

Gender	# of policy holders	Total Claim Loss	Avg. Loss Cost	Differential
Male	100,000	\$50,000,000	\$500	1.22
Female	80,000	\$24,000,000	\$300	0.73
Total	180,000	\$74,000,000	\$411	1.00

•In this simplistic example, assuming gender is statistically significant, males and females would be charged a base premium multiplied by the differential:

Female: .73 X base premium of \$600= \$534

 Now, contribute more factors: gender, age, and distance to work:

	Under 30	Under 30	Over 30	Over 30	
	Kilmetres to	Kilmetres to	Kilmetres to	Kilmetres to	
	work	work	work	work	Total
	under 25 yrs	over 25 yrs	under 25 years	over 25 years	
Male	1.16	1.09	1.95	1.70	1.22
Female	0.61	0.49	0.97	0.91	0.73
total	1.16	1.22	0.88	1.03	1.00

<u>Male under 25 years old</u> who drives <u>more than 30 kilometres</u> to work would be charged: \$600 X 1.95 = **\$1170**

Female over 25 years old who drives <u>under 30 kilometres</u> to work would be charged: \$600 X .49 = **\$294**

So why isn't this sufficient for pricing purposes?

Groups	# of Records	Differential
Male Over 25 years and drives over 30 kilometres to work	100,000	1.7
Total # of policies	300,000	1

- Using the technique of calculating risk based on group differentials, we have 100,000 or 1/3 of the entire portfolio which will obtain the same level of risk.
 - Is it possible to get more granular in calculating risk for smaller groups of records?
- Another drawback to using the above method is multicollinearity or interaction between variables
- These kind of limitations are overcome through the use of MVA (Multivariate Analysis) or predictive analytics type solutions:
 - Outcome is a score for each individual
 - Solution takes into account the interaction between variables

Two Reasons why Predictive Analytics has not been used historically:

1. Technology

 Inability to employ analytics at an individual policy level

2. Analytics Practitioners

 Lack of knowledge and expertise in data manipulation techniques to create analytical file at individual policy record

Does this mean that traditional Actuarial techniques don't work?

Deciles using Premium as the solution	AVG. Claim Amount	% OF TOTAL Claim amounts in Interval	Claim/Premium Ratio
1	\$483.75	17%	0.74
2	\$467.44	16%	0.78
3	\$293.40	10%	0.53
4	\$363.71	13%	0.81
5	\$343.05	12%	0.86
6	\$238.43	8%	0.68
7	\$194.57	7%	0.65
8	\$219.14	8%	0.88
9	\$83.88	3%	0.42
10	\$160.03	6%	1.07

Premium as determined by traditional actuarial approaches works quite well in assessing claim risk(avg.claim amount).

In this example, though, the tool is unable to target policies by claim/premium ratio.

Using Predicted Analytics as the solution	Avg. Claim Amount	% OF TOTAL Claim Amounts in Interval	Claim/Premium Ratio
1	981	25.00%	0.88
2	643	17.00%	0.77
3	546	14.50%	0.75
4	419	12.50%	0.66
5	329	8.50%	0.59
6	297	7.50%	0.61
7	250	5.50%	0.59
8	168	4.50%	0.47
9	129	3.50%	0.45
10	56	1.50%	0.26

Here is gains/decile chart using predictive analytics solutions.

Notice the increased rank ordering capability both on observed avg. claim amount and claim/premium ratio

- AMA issues insurance policies for property homeowners
- Challenges:
 - Loss Ratios have been steadily increasing over last few years
 - Demonstrate how predictive analytics solutions can improve upon their existing methods of assigning risk to homeowners
- What will be our 'ACE IN THE HOLE' here?
- The DATA
 - Create the dependent variable of loss cost (claim frequency X severity)
 - Create independent variables that can potentially predict loss cost
 - Create an analytical file where each record represents one policyholder with hundreds of different fields of information

*ULTIMATELY INCREASED DATA GRANULARITY

• Sources of data used to create the analytical files are:

1. Prop_Claim_tran file • 90.490 records 2. Prop_Prop_tran file714,594 records

3. Prop_Data_Loc_ Postalcodes488,980 records

- This source data was used to create our analytical file of 60M records
- First step: perform data audit on all source data
 - Data diagnostic reports and frequency distributions to assess data quality and data integrity
- Data audit results provide key insights into what variables should be created for this exercise.

- Unique Business and Data Challenges
 - Working with stakeholders with strong quants knowledge
 - Determining the appropriate pre post window
 - Do we have enough claims in post period to build model?
 - How recent are they?

Pre Period	Post Period	
Independent Variables	Dependent Variables of Claim and Amount	

Accounting for mid-term changes in term is unique in creating insurance risk
analytics solutions

- Key variables in the analytical file were created:
 - Prior claim history
 - Territory/geography
 - Policy statistics/coverage type
 - Location information
 - Stats Can Data
 - Etc.
- Correlation and EDA reports were run as part of the model building exercise

Sample Correlation

Variable	Correlation	P-Value
Rate Territory=M1	-0.0218	0.0002
% Clerical Occupations	-0.0201	0.0005
Rider=RVC	0.0199	0.0006
gross limit/liability limit	0.0196	0.0007
Rate Territory=3	0.0194	0.0008
%intraprovincial migrants	0.0181	0.0018

• Sample EDA

Variable	Count	Range	Observed Claim Amount
FSA-CHAID Variable	29800	Average	\$774.39
	4361	1	\$1,498.00
	8766	2	\$860.00
	3467	3	\$787.00
	5455	4 to 5	\$592.00
	7751	6 to 7	\$393.00
Number of Riders	29800	Average	\$774.39
	23061	0	\$674.67
	6739	1 to 7	\$1,115.66

- Most variables in the model were consistent with conventional property insurance underwriting concerns:
 - Location of property FSA (based on first 3 digits of postal code)
 - Coverage Limits
 - Previous claim history
 - Policy Riders
 - Statistics Canada (socio-demographic)
 - e.g. education and occupation
 - Client Age
- The next step was to validate this model and observe its actual performance

Decile/Gains Chart

Deciles ranked by predictive analytics model	Average Premium	Average Actual Loss Amount	Claim/Premium Ratio
1	1354	1895	140
2	1045	1240	119
3	907	740	82
4	865	798	92
5	791	935	118
6	746	800	107
7	721	553	77
8	691	430	62
9	666	484	73
10	608	176	29

Premium is still an effective tool but the predictive analytics solution is superior

- The Line Chart depicts the cum. percentage of actual losses in the portfolio by the model score(green l,ine) and the current premium(red line) being charged by the company
- The distance between the line representing losses predicted by the model vs. current pricing structure represents the "lift", or increased accuracy in loss prediction provided by the model
- In the top 20% of risks, the model captures 46% of losses compared to 32.4% for premium

An Effective Decision Tool for front-line Underwriting and Brokers

Conclusions

- Current tracking of model indicates model is performing as expected
- Currently developing auto claim risk models for same client
- Most of work in insurance claim risk is in the auto sector
- More competition now in producing these models
- Predictive Analytics practitioners have the edge
 WORKING THE DATA