Predictive Analytics Times
Predictive Analytics Times
EXCLUSIVE HIGHLIGHTS
SHARE THIS:

CONTINUE READING: Access the complete article in HealthITAnalytics, where it was originally published.  

2 years ago
Predictive Big Data Analytics Identify High-Risk ED Patients

 

A predictive big data analytics algorithm using a variety of demographic and clinical data points may be helpful for identifying patients at high risk of hospitalization or ED use.

Reducing unnecessary emergency department utilization and avoidable hospital admissions is a top priority for many healthcare systems, especially those seeking to cut costs and eliminate waste in preparation for value-based care.


Register using code PATIMES16 and receive 15% off conference passes.

While coordinated care models such as the patient-centered medical home (PCMH) have successfully helped providers reroute non-critical patients away from the ED, the use of predictive big data analytics and risk score modeling may be required to identify patients that could benefit from early interventions and closer monitoring.

In a study published this month in the American Journal of Managed Care, researchers from the Mayo Clinic explain how predictive analytics can use comorbidity and historical service utilization data to identify patients at high risk of ending up in the emergency department or the inpatient setting – and how this data can inform the decision-making of patient-centered medical homes and other coordinated care activities.

“Changing the payment incentives to improve the organization of care delivery, including accountable care organizations, has led to a reorganization of delivery of care focusing on patient-centered medical homes,” the study explains. “Many patient-centered medical homes stratify their populations and try to align the level of care with the needs of their patients.”

As PCMHs work to allocate resources to their most needy patients and take a proactive approach to care, they require actionable insights for each individual.

“Two key questions need to be answered: Who is likely to have utilization, and what can be done for these patients?” the study says.

While providers have invested in a number of different data-driven methodologies designed to answer these questions in a timely, comprehensive manner, the researchers suggest that a combination of big data analytics and manual, provider-driven patient selection may be most ideal for ensuring that needy individuals do not slip through the cracks.

Developing a highly sensitive and accurate predictive analytics algorithm has been a challenge for the healthcare industry, which is still largely struggling to generate the clean, complete, and detailed clinical data required to feed analytics tools. Existing algorithms may only include a small selection of data points, such as records of previous hospitalizations, comorbidity count, or frequent primary care visits, as a way to identify risk.

But the Mayo researchers hypothesized that the addition of clinical and demographic data points, including current medications such as insulin and narcotics, mental health conditions, body weight, English language proficiency, and insurance status, may be able to craft a more accurate portrait of hospitalization or ED visit risk.

To test the theory, the team examined electronic health record data from more than 84,000 adult patients assigned to certain primary care providers between 2010 and 2011. The researchers divided the patients into six age categories, and used public or private insurance coverage as an indicator of likely socioeconomic status.

The researchers also used Minnesota’s five-tier comorbidity system to understand likely risk of a crisis event. The structure uses a 0 through 4 scoring method to sort patients into risk buckets based on the number of their known conditions.

During the study, the team compared a basic predictive model using only the five-tier comorbidity system with their enhanced algorithm in an effort to identify patients very likely to experience a hospitalization or ED visit within the next year.

CONTINUE READING: Access the complete article in HealthITAnalytics, where it was originally published.

Author Bio:

Jennifer is the lead editor for HealthITAnalytics.com. She is a graduate of Mount Holyoke College with a major in history. In addition to her interests in healthcare data management and systematic improvement, she is a novelist, amateur target archer, and avid crochet enthusiast.

Leave a Reply