Predictive Analytics Times
Predictive Analytics Times
EXCLUSIVE HIGHLIGHTS
The Art of Data Science
 With much of the latest discussion...
Wise Practitioner – Predictive Analytics Interview Series: Ashley Walsh at LeanTaas
 In anticipation of her upcoming conference...
Twelve Hot Deep Learning Applications Featured at Deep Learning World
  For today’s leading deep learning...
New Book: Stephen Few’s “Big Data, Big Dupe” Smackdown
 Five years ago, in 2013, two...
SHARE THIS:

3 years ago
Practical Predictive Modeling: Quick Variable Selection

 This post is largely excerpted from Dean Abbott’s book Applied Predictive Analytics (Wiley, 2014) Many predictive modeling projects include hundreds of candidate input variables as a part of the analysis, including original variables and new features created to improve the predictive models. The inclusion of hundreds of variables as candidates for predictive models can cause problems, however: 1) Some algorithms cannot reliably use hundreds or thousands of input variables. 2) Algorithms that can reliably incorporate hundreds or thousands of variables as candidate inputs or actual inputs to models may take considerable time to train, slowing the iterative process of building

To view this content
Login OR subscribe for free

Already receive the Predictive Analytics Times emails?
As of January 2014, the Predictive Analytics Times now requires legacy email subscribers to upgrade their subscription - one time only - in order to attain a password-protected login and gain complete access.

Click here to complete this one-time subscription upgrade

  

Existing Users Log In
   
New User Registration
*Required field

Comments are closed.