True-Lift Modeling: Mining for the Most Truly Responsive Customers and Prospects

Kathleen Kane
Jane Zheng
Victor Lo
Alex Arias-Vargas

Fidelity Investments

1 Also with Bentley University
2.6% of targeted customers bought a 529 college savings plan! Fantastic!

1.1% of non-targeted customers opened 529 accounts, so the campaign generated a lift of 1.5%

What?

We should compare campaign results to a randomly held control group.

Eh?

No random control was held, so we came up with a way to clone the target group. The cloned group has a 2.1% response rate. So the campaign generated a lift of 0.5%

No way!

Each of you gave me a different number for the 529 campaign. I want you to tell me which number is right!

2.6! 1.5! 0.5! Too many numbers!
Stop spending direct marketing dollars on customers who would purchase anyway!

- True-lift modeling can identify:
 - which customers will purchase without receiving a marketing contact
 - which customers need a direct marketing nudge to make a purchase
 - which customers have a negative reaction to marketing (and purchase less if contacted)

- This discussion will describe:
 - the basic requirements needed to succeed with true-lift modeling
 - scenarios where this modeling method is most applicable
 - the pros and cons of various approaches to true-lift modeling
Outline

- Why do we need true-lift modeling? 10min
- What are the methods of true-lift modeling? 10min
- What is the context where true-lift modeling is most necessary & useful? 10min
- Questions 10min
What’s wrong with this picture?

A successful marketing campaign

A successful response model

Incidence of Treatment Responders

- Decile 1: 14%
- Decile 2: 7%
- Decile 3: 4%
- Decile 4: 2%
- Decile 5: 1%
- Decile 6: 1%
- Decile 7: 1%
- Decile 8: 0%
- Decile 9: 0%
- Decile 10: 0%

Pct of Treatment Group

- 0%
- 50%
- 100%

Pct of Treatment Responders

- 0%
- 50%
- 100%

CUME Pct of Responders

Treatment Response Rate

- Cell 1: 3.3%
- Cell 2: 2.7%
- Total: 3.0%

Control Response Rate

- Cell 1: 2.3%
- Cell 2: 1.7%
- Total: 2.0%
Measuring response models by lift over control

- Treatment "Responders"
- Control "Responders"

Simulated data
Why do we need true-lift modeling?

- Standard response models often behave more like Look-alike models than like True-lift models.
- Why spend marketing $$$ on people who would do Action A anyway?

Look-alike model = find people who will take Action A

\[P(A) \]

Standard response model = find people who will take Action A after receiving a treatment

\[P(A | \text{Treatment}) \]

True-lift model = find people who will take Action A \textit{only} after receiving a treatment

\[P(A | \text{Treatment}) - P(A | \text{no Treatment}) \]
Why do we need true-lift modeling?

Look-alike model = find people who will take Action A

When is a look-alike model good enough?
- Responders can only take Action A if they receive one unique marketing contact
 - Single channel
 - Single contact
 - No other way to take Action A

True-lift model = find people who will take Action A only after receiving a treatment

When is a true-lift model needed?
- Responders have many opportunities to take Action A
 - Multiple channels
 - Multiple contacts
The True-Lift model objective

- Maximize the Treatment responders while minimizing the control “responders”
True-Lift model solutions

A. Difference of two models: Treatment – Control
B. Two sequential models: Treatment Actual – Control Prediction
C. Binned & Averaged dependent variable
Solution A1: Difference of two models: Treatment - Control

- Model 1 predicts $P(A \mid \text{Treatment})$
 - Dependent variable = Action A
 - Model Population = Treatment Group
- Model 2 predicts $P(A \mid \text{no Treatment})$
 - Dependent variable = Action A
 - Model Population = Control Group
- Final prediction of lift =

 \[
 \text{Model 1 Score} - \text{Model 2 Score}
 \]

- Pros: simple concept, familiar execution (x2)
- Cons: indirectly models true-lift, the difference may be only noise, 2x the work, scales may not compare, 2x the error, variable reduction done on indirect dependent vars
Solution A2: Single combined model using Treatment interactions

- Model population = Treatment & Control together
- Dependent variable = Action A
- Independent variables are attributes x,y,z:
- Conceptually:

\[
P(\text{Action A}) = P(\text{A} \mid \text{not Treated}) + P(\text{A} \mid \text{only if Treated})
= \{\text{some coefficients}\} \times \{x, y, z\} + 0/1 \text{ treatment flag} \times \{\text{some coefficients}\} \times \{x, y, z\}
\]

During model development, the interaction flag is 0 for control records and 1 for treatment records

- Final prediction of lift = difference of two scores
 \[
 = \text{Prob(response if Treated)} - \text{Prob(response if not Treated)}
 = \text{score with interaction flag set to 1} - \text{score with interaction flag set to 0}
 \]

- Pros: combined model minimizes compounded errors
- Cons: indirectly models true-lift; large number of independent terms; collinearity of terms; reduction needed; adding two model scores may compound errors

Solution B: Two sequential models: Treatment actual – Control prediction

- Model 1 predicts $P(A \mid \text{no Treatment})$
 - Dependent variable = Action A
 - Model Population = Control Group
- Model 2 predicts $P(A \mid \text{Treatment}) - P(A \mid \text{no Treatment})$
 - Dependent variable = Action A – Model 1 Score
 - Model Population = Treatment Group
- Final prediction of lift = Model 2 Score
- Pros: more directly models true-lift; identifies variables that are directly correlated with true-lift (some of which are drivers of lift)
- Cons: the Model 2 dependent variable contains Model 1 errors; 2x the work, Model 1 scores and Action A should (but might not) share the same scale
Solution C1: Binned & averaged dependent variable

- Model 1 predicts $P(A \mid \text{no Treatment})$
 - Dependent variable = Action A
 - Model Population = Control Group
- Create N bins for Treatment & Control population together, ranked by Model 1 score (control “response”)
- Calculate dependent variable value for each BIN:
 - Treatment response rate – Control response rate
- [Could stop here, using the bin average lift as the predicted lift, or continue with]:
 - Model 2 predicts actual average lift of each bin
 - Dependent variable = Average lift within each bin
 - Model Population = Treatment Group
- Final prediction of lift = Model 2 Score
- Pros: directly models true-lift; identifies variables that are directly correlated with true-lift (some of which are drivers of true-lift)
- Cons: 2X the work; the approach requires variation in average lift across bins (which might not exist); control response needs to be correlated to true-lift response
Solution C2: Solution A or B + binned & averaged dependent variable

- Complete Solution A or B first to rank-order observations by estimated lift
- Use Solution A/B model score to rank and bin the observations: create N bins for Treatment & Control population together, ranked by Solution A/B score
- Calculate dependent variable value for each BIN:
 Treatment response rate – Control response rate
- [Could stop here, using the bin average lift as the predicted lift, or continue with]:
 - Model 3 predicts actual average lift of each bin
 - Dependent variable = Average lift within each bin
 - Model Population = Treatment Group
- Final prediction of lift = Model 3 Score
- Pros: directly models true-lift; this approach is more likely to maximize the variation in average lift across bins; identifies variables that are directly correlated with “lift” (some of which are drivers of lift)
- Cons: 3X the work
Standard response model

Solution A2: Single combined model with interactions

Solution B: Depvar = Treatment actual – Control prediction

Solution C1: Ranked & binned by Control model

Solution C2: Ranking & binned by Lift model

Simulated data
Other solutions, variations & applications

- Decision trees
- Clustering / K-nearest neighbor
- Bootstrapping
- Optimization

- Personalized medicine
- Other marketing situations (how to separate very similar groups who act differently)
Ideal conditions for true-lift modeling

- A randomized control group is withheld!
- Treatment does not cause all “responses”
- “Response” is not correlated to “lift” (i.e., response model is not good enough)
- Lift-to-noise ratio is large enough
- If overall lift is near 0, then you need pockets of both negative lift and positive lift
- Repeated campaigns, or at least test campaign precedes rollout
Stop spending direct marketing dollars on customers who would purchase anyway!

- **True-lift modeling** can identify:
 - which customers will purchase without receiving a marketing contact
 - which customers need a direct marketing nudge to make a purchase
 - which customers have a negative reaction to marketing (and purchase less if contacted)

- This discussion will describe:
 - the basic requirements needed to succeed with true-lift modeling
 - scenarios where this modeling method is most applicable
 - the pros and cons of various approaches to true-lift modeling
Glossary

- “Response” = taking the desired action (Action A); might have done Action A whether treated or not
- True-lift = taking the desired action (Action A) *only* in response to the Treatment; would not have done Action A if not treated (aka uplift, net lift, incremental lift)